
Development of Dependable
Network-on-Chip Platform (4)	

Tomohiro Yoneda

National Institute of Informatics

Masashi Imai
Hirosaki Univ.	

Takahiro Hanyu
Tohoku Univ.	

Hiroshi Saito
Univ. of Aizu	

Kenji Kise
Tokyo Tech.

Project summary	

w 5.5 year National project (CREST)

w Goal
n  Platform for performing many and various tasks

dependably, efficiently and adaptively
n  Demonstration in automotive control system area

2013/6/30 IFIP WG 10.4 2

Project
Starts

2008.10 2009.4 2010.4 2011.4 2012.4 2013.4 2014.3

Project
Ends

First progress report
at the IFIP winter meeting	

Second progress report
at the IFIP summer meeting	

This progress report

Third progress report
at the IFIP summer meeting	

Backgrounds	

w  Recent cars are equipped with many ECUs
n  Conventional ECU configuration	

2013/6/30 IFIP WG 10.4 3

Sensors/Actuators

ECU1
ECU2

ECUi
ECUn

CAN, FlexRay, etc.

(a) Conventional approach

Backgrounds	

w  Recent cars are equipped with many ECUs
n  Centralized ECU approach	

2013/6/30 IFIP WG 10.4 4

Intelligent Sensors/Actuators

ECU1

CAN, FlexRay, etc.

(b) Centralized ECU approach

R

R R R

R

ECU2 ECUn

Centralized ECUs
Interface cores

CPU cores

Backgrounds	

w  Recent cars are equipped with many ECUs
n  Centralized ECU approach	

2013/6/30 IFIP WG 10.4 5

Intelligent Sensors/Actuators

ECU1

CAN, FlexRay, etc.

(b) Centralized ECU approach

R

R R R

R

ECU2 ECUn

Centralized ECUs
Interface cores

CPU cores

Any ECU can access any sensors/actuators

ECUs efficiently used by balancing loads
Tasks continuously executed even if some ECUs become faulty

(i.e., faulty ECU does not result in malfunction of its specific functions)

Outcome	

w Hardware platform
n  Multi-Chip NoC

l  Fully asynchronous on-chip network
l  Dependable, adaptive, deadlock-free routing
l  Efficient inter-chip communication technology

w Dependable task execution
n  Modified Pair & Swap

w  Task allocation
n  Redundant allocation, redundant scheduling

w Demonstration of the proposed approach
n  Practical automotive application

2013/6/30 IFIP WG 10.4 6

Outcome	

w Hardware platform
n  Multi-Chip NoC

l  Fully asynchronous on-chip network
l  Dependable, adaptive, deadlock-free routing
l  Efficient inter-chip communication technology

w Dependable task execution
n  Modified Pair & Swap

w  Task allocation
n  Redundant allocation, redundant scheduling

w Demonstration of the proposed approach
n  Practical automotive application

2013/6/30 IFIP WG 10.4 7

Routers	

V850E CPU
cores	

Routers	

Outcome	

w Hardware platform
n  Multi-Chip NoC

l  Fully asynchronous on-chip network
l  Dependable, adaptive, deadlock-free routing
l  Efficient inter-chip communication technology

w Dependable task execution
n  Modified Pair & Swap

w  Task allocation
n  Redundant allocation, redundant scheduling

w Demonstration of the proposed approach
n  Practical automotive application

2013/6/30 IFIP WG 10.4 8

Dependability in Processor level	

w  Duplicated execution, comparison, and pair-
reconfiguration

2013/6/30 IFIP WG 10.4 9

Processor
core-00

I/O-0 I/O-1

Processor
core-01

mem-00

Processor
core-11

Processor
core-10

I/O-n

Processor
core-n1

Processor
core-n0

00 10 20 n0

01 11 21 n1

02 12 22 n2

mem-10 mem-n0

mem-01 mem-11 mem-n1

Task A
executed by
this pair	

Task B
executed by
this pair	

Compare Task A results	

Compare Task B results	

Modified Pair & Swap	

w  Duplicated execution, comparison, and pair-
reconfiguration

2013/6/30 IFIP WG 10.4 10

6) The I/O core then decides the final comparison result and issues actuator output signals to the outside of the chip when
there is no mismatch. If there is a mismatch, the retry-and-decision phase starts. The I/O core specifies the same task
performed by the same processor cores and an additional processor core so that those three processor cores compose
a TMR. Then, the operation is repeated from the above 2.

Figure 3 shows how the system works under a non-faulty condition. As shown in Figure 3, a processor core Px0
(x = 0, 1, 2) is coupled with a processor core Px1 as a pair, resulting in three pairs. In the pair phase, two processor
cores in each pair perform two identical copies of a specified task and send their results to the I/O core. The times when
processor cores start the specified task are different since the latency from the I/O core to each processor core through the
on-chip networks is different. The I/O core gathers computation results from processor cores and compares them. Normally,
all the results match as shown in rounded rectangle in Figure 3. Thus, the pair phase is continued.

C. Fault location mechanism

If a fault is detected by a mismatch, the retry-and-decision phase starts. The mismatched pair and one of other processor
cores which stores the mismatched task compose a TMR. Then, the I/O core sends the same data which was sent in the
pair phase to the three processor cores and gathers their results. Figure 4 shows the operation of the proposed scheme when
a transient fault occurs. The initial configuration is the same as that shown in Figure 3. However, at the first comparison, it
is recognized that the two processor cores P00 and P01 did not produce the same result. For the retry-and-decision phase,
processor cores P00, P01, and P10 compose a TMR. Note that P10 has task A in its private memory as shown in Figure 2.
This makes it possible to detect whether the fault was transient or permanent. As task A encountered a problem it must be
run again after the first comparison. If no mismatches are found at the second comparison, the fault detected at the first
comparison can therefore be assumed to be transient. This means that the next tasks can be performed without altering the
processing pairs as shown in Figure 4.

time

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

A: P00 = P01
B: P10 = P11
C: P20 = P21

A: P00 = P01
A: P00 = P10
A: P01 = P10

A: P00 <> P01
B: P10 = P11
C: P20 = P21

Figure 4. Transient fault operation.

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

Task A

A:P01 = P10

B: P10 = P11
C: P20 = P21

A: P00 <> P01
B: P10 = P11
C: P20 = P21

A: P00 <> P01
A: P00 <> P10
A: P01 = P10

time

Figure 5. Permanent fault operation.

Figure 5 shows the operation of the proposed system when a permanent fault occurs. From the figure, it can be seen that
the first two operations between the I/O core and processor cores are the same as those shown in Figure 4. At the second
comparison, if a permanent fault occurred in processor core P00, two mismatches would exist in the TMR; P00 <> P01 and
P00 <> P10. Thus, the processor core P00 can be confirmed as faulty and the remaining five cores would then be able to
compose three pairs after the second comparison. In this case, processor cores P01 and P10 compose a new pair, that is, the
processor core P10 performs both task B and task A sequentially. Thus, in the next pair phase, the I/O core compares two
tasks B and C at the first comparison and then compares task A at the second comparison as shown in Figure 5. However,
the deadline period is assumed to be enough long to execute three tasks (as mentioned later) and comparisons sequentially.
Thus, performance degradation does not occur.

According to the proposed scheme, the entire system achieves graceful degradation. If a permanent fault occurs in
processor core P01 after the above condition shown in Figure 5, processor cores P10 and P11 perform both task B and
task A sequentially as shown in Figure 6. In this case, if a permanent fault occurs in either P10 or P11, the entire system
is considered to be down since the remaining number of processor cores which can perform task A is only one, and thus
the comparisons cannot be performed. On the other hand, in a fortunate case, it can be allowed that N processor cores get
failed in a 2N core NoC-based MPSoC. Figure 7 shows the operation after processor cores P00, P10, and P20 have gotten
failed in the previous configuration. All the remaining cores P01, P11, and P21 perform two tasks sequentially. The I/O
core compares their results after receiving the second set of results. Normally, all the results match as shown in rounded
rectangle.

Figure 8 shows the operation when a transient fault occurs. At the first comparison it is recognized that one of three
comparison results is a mismatch. In this case, there is no redundant cores to execute the mismatched task. Thus, the
mismatched task is re-executed on the same cores as shown in Figure 8. If no mismatch is found at the second comparison,

Control cycle	

Idea is simple!	

Implementation is not so simple!	

w  Issues to be considered
n  Copies of tasks should be loaded in several

cores, considering possible faulty patterns
n  Third core should always know every

information of the task execution for TMR
configuration

n  For each faulty patterns, every task execution
should be done within the control cycle

n  Programmers do not want to think about
duplicated or triplicated task execution	

2013/6/30 IFIP WG 10.4 11

Static / Redundant Task Allocation

2013/6/30 IFIP WG 10.4 12

P0	

T0	

T1	
 T1	

T2	
T2	

T0	

T1	

T2	

T1	

T2	

T0	
 T0	

Stand-by
Inactive

Active

T0	

T2	

T1	

from IO	

to IO	

Task graph	

P1	
 P2	
 P3	
 P4	
 P5	

T2	

Static / Redundant Task Allocation

2013/6/30 IFIP WG 10.4 13

P0	

T0	

T1	
 T1	

T2	
T2	

T0	

T1	
 T1	

T0	
T0	

T2	

T1	

from IO	

to IO	

Task graph	

P1	
 P2	
 P3	
 P4	
 P5	

T0	

T2	

T2	

Static / Redundant Task Allocation

2013/6/30 IFIP WG 10.4 14

P0	

T0	

T1	
 T1	

T2	
T2	

T0	

T1	
 T1	

T0	

T2	

T1	

from IO	

to IO	

Task graph	

P1	
 P2	
 P3	
 P4	
 P5	

T0	

T2	

T0	

Alert should be indicated	

Temporary TMR configuration	

w Active tasks are also re-executed
n  Transient errors can be masked

w Only “TMR command” is given
n  Quick execution is possible
n  IO core does not have to keep data	

2013/6/30 IFIP WG 10.4 15

Active Active Stand-by

TMR command

Input variables

State variables

Modified Pair & Swap	

w  Duplicated execution, comparison, and pair-
reconfiguration

2013/6/30 IFIP WG 10.4 16

6) The I/O core then decides the final comparison result and issues actuator output signals to the outside of the chip when
there is no mismatch. If there is a mismatch, the retry-and-decision phase starts. The I/O core specifies the same task
performed by the same processor cores and an additional processor core so that those three processor cores compose
a TMR. Then, the operation is repeated from the above 2.

Figure 3 shows how the system works under a non-faulty condition. As shown in Figure 3, a processor core Px0
(x = 0, 1, 2) is coupled with a processor core Px1 as a pair, resulting in three pairs. In the pair phase, two processor
cores in each pair perform two identical copies of a specified task and send their results to the I/O core. The times when
processor cores start the specified task are different since the latency from the I/O core to each processor core through the
on-chip networks is different. The I/O core gathers computation results from processor cores and compares them. Normally,
all the results match as shown in rounded rectangle in Figure 3. Thus, the pair phase is continued.

C. Fault location mechanism

If a fault is detected by a mismatch, the retry-and-decision phase starts. The mismatched pair and one of other processor
cores which stores the mismatched task compose a TMR. Then, the I/O core sends the same data which was sent in the
pair phase to the three processor cores and gathers their results. Figure 4 shows the operation of the proposed scheme when
a transient fault occurs. The initial configuration is the same as that shown in Figure 3. However, at the first comparison, it
is recognized that the two processor cores P00 and P01 did not produce the same result. For the retry-and-decision phase,
processor cores P00, P01, and P10 compose a TMR. Note that P10 has task A in its private memory as shown in Figure 2.
This makes it possible to detect whether the fault was transient or permanent. As task A encountered a problem it must be
run again after the first comparison. If no mismatches are found at the second comparison, the fault detected at the first
comparison can therefore be assumed to be transient. This means that the next tasks can be performed without altering the
processing pairs as shown in Figure 4.

time

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

A: P00 = P01
B: P10 = P11
C: P20 = P21

A: P00 = P01
A: P00 = P10
A: P01 = P10

A: P00 <> P01
B: P10 = P11
C: P20 = P21

Figure 4. Transient fault operation.

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

Task A

A:P01 = P10

B: P10 = P11
C: P20 = P21

A: P00 <> P01
B: P10 = P11
C: P20 = P21

A: P00 <> P01
A: P00 <> P10
A: P01 = P10

time

Figure 5. Permanent fault operation.

Figure 5 shows the operation of the proposed system when a permanent fault occurs. From the figure, it can be seen that
the first two operations between the I/O core and processor cores are the same as those shown in Figure 4. At the second
comparison, if a permanent fault occurred in processor core P00, two mismatches would exist in the TMR; P00 <> P01 and
P00 <> P10. Thus, the processor core P00 can be confirmed as faulty and the remaining five cores would then be able to
compose three pairs after the second comparison. In this case, processor cores P01 and P10 compose a new pair, that is, the
processor core P10 performs both task B and task A sequentially. Thus, in the next pair phase, the I/O core compares two
tasks B and C at the first comparison and then compares task A at the second comparison as shown in Figure 5. However,
the deadline period is assumed to be enough long to execute three tasks (as mentioned later) and comparisons sequentially.
Thus, performance degradation does not occur.

According to the proposed scheme, the entire system achieves graceful degradation. If a permanent fault occurs in
processor core P01 after the above condition shown in Figure 5, processor cores P10 and P11 perform both task B and
task A sequentially as shown in Figure 6. In this case, if a permanent fault occurs in either P10 or P11, the entire system
is considered to be down since the remaining number of processor cores which can perform task A is only one, and thus
the comparisons cannot be performed. On the other hand, in a fortunate case, it can be allowed that N processor cores get
failed in a 2N core NoC-based MPSoC. Figure 7 shows the operation after processor cores P00, P10, and P20 have gotten
failed in the previous configuration. All the remaining cores P01, P11, and P21 perform two tasks sequentially. The I/O
core compares their results after receiving the second set of results. Normally, all the results match as shown in rounded
rectangle.

Figure 8 shows the operation when a transient fault occurs. At the first comparison it is recognized that one of three
comparison results is a mismatch. In this case, there is no redundant cores to execute the mismatched task. Thus, the
mismatched task is re-executed on the same cores as shown in Figure 8. If no mismatch is found at the second comparison,

Control cycle	

Temporary TMR configuration	

w Active tasks
n  should roll back their state variables

w Stand-by task
n  should have correct input variables and state

variables	

2013/6/30 IFIP WG 10.4 17

Active Active Stand-by

TMR command

Input variables

State variables

Previous states
These
should be
available

Temporary TMR configuration	

w To prepare for TMR configuration, stand-
by task usually
n  Receives all input data given to active tasks
n  Receives the state variables updated by active

tasks	

2013/6/30 IFIP WG 10.4 18

Active Active Stand-by

Inputs

Input variables

State variables

Example of task execution	

2013/6/30 IFIP WG 10.4 19

P0

P1

P2

P3

P4

P5	

T0	
0
0
0

T0	
0
0
0

T0	
0
0
0

T1	
0
0
0

T1	
0
0
0

T2	
0
0
0

i0, i1	
 o0, o1, v0	

v0
0
0

o0, o1	

T1	

v0
0
0

o2, o3, v1	
 o3	

0
v1
0

0
v1
0

v0
v1
0

T2	

T2	

o4, v2	

v0
0
v2

0
v1
v2

0
0
v2

Control Cycle	

v0
0
0

State variables
of tasks	

Sensor Inputs

Just receive
sensor inputs	

Just receive
state variables	

o2 is sent out o4 is sent out

T0	

T2	

T1	

from IO	

to IO	

Task graph	

T0	

No action	

T1	

T2	

Active

Inactive

Stand-by

Active

Example of task execution	

2013/6/30 IFIP WG 10.4 20

T0	
v0
0
0

T0	
v0
v1
0

T0	
v0
0
v2

T1	

T1	
0
v1
v2

T2	
0
0
v2

i2, i3	
 o5, o6, v3	

v3
0
v2

o5, o6	

v0
0
0

o7, o8, v4	
 o8	

0
v4
0

0
v4
v2

v3
v4
0

T2	

T2	

o9, v5	

v3
0
v5

0
v4
v5

0
0
v5

o5, o6, v3	

T0	

T0	

T0	

TMR	

Roll back
state variables

Mismatch	

T1	

Fault pattern updated	

v3
v1
0

P0 fault detected	

faulty

Old state variables are preserved,
when state variables are updated

Roll back
state variables	

T0	
T0	

0
v1
0

v3
v1
0

T1	

P0

P1

P2

P3

P4

P5	

Control Cycle	

T2	

Example of task execution	

2013/6/30 IFIP WG 10.4 21

T0	

T0	

v3
v4
0

T0	

v3
0
v5

T1	
v3
v4
0

T1	
0
v4
v5

T2	
0
0
v5

i4, i5	
 p0, p1, v6	

v6
0
v5

p0, p1	

T1	

v6
v4
0

p2, p3, v7	
 p3	

v6
v7
0

0
v7
v5

T2	

T2	

p4, v8	

v6
0
v8

0
v7
v8

0
0
v8

v6
v7
0

v6
v4
0

T1	

T2	
P0

P1

P2

P3

P4

P5	

Control Cycle	

T0	

Implementation is not so simple!	

w  Issues to be considered
n  Copies of tasks should be loaded in several

cores, considering possible faulty patterns
n  Third core should always know every

information of the task execution for sudden
TMR configuration

n  For each faulty patterns, every task execution
should be done within the control cycle

n  Programmers do not want to think about
duplicated or triplicated task execution	

2013/6/30 IFIP WG 10.4 22

Tool support	

w  Given by users
n  Simplex simulink program
n  Task declaration (by specifying atomic subsystems)
n  # of task copies allocated
n  # of processer cores available

w  Front-end GUI tool supports
n  Allocation of multiple task copies to redundant

processor cores with timing and memory constraints
w  Back-end tool supports (ongoing work)

n  C code generation for simulink codes
n  Wrapper code templates for receiving and sending

data as well as handling TMR configuration

2013/6/30 IFIP WG 10.4 23

IO core duplication (ongoing work)	

w  IO core plays simple but important roles
n  Implemented by hardware or a small processor
n  Simple crash fault assumed

l  Fixed duplex configuration

　	

2013/6/30 IFIP WG 10.4 24

NoC Platform

IO core	

IO core	

D/A,
level
conv.

Sensor
inputs	

A/D,
level
conv.

Actuator
outputs	

Data sent to both IO cores at every
control cycle	

Data
decoder …

…

First data with correct check-
sum are used	

Data
generator

Summary	

w For our dependable NoC based platform
n  Implementation of dependable task execution

(i.e., modified Pair & Swap)
n  Task allocation for modified Pair & Swap

l  Front-end tool

w Ongoing work
n  Back-end tool
n  Implementation of duplicated IO core	

2013/6/30 IFIP WG 10.4 25

