Development of Dependable
Network-on-Chip Platform (4)

Tomohiro Yoneda
National Institute of Informatics

Masashi Imai Takahiro Hanyu Hiroshi Saito Kenji Kise
Hirosaki Univ. Tohoku Univ. Univ. of Aizu Tokyo Tech.



Project summary
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¢ Goal

= Platform for performing many and various tasks
dependably, efficiently and adaptively

= Demonstration in automotive control system area
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Backgrounds

+ Recent cars are equipped with many ECUs
Conventional ECU configuration

Sensors/Actuators

ECU1

ECU2

CAN, FlexRay, etc.
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Backgrounds

+ Recent cars are equipped with many ECUs

| Any ECU can access any sensors/actuators

ECUs efficiently used by balancing loads
Tasks continuously executed even if some ECUs become faulty
K(i.e., faulty ECU does not result in malfunction of its specific functions)/
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Outcome

¢+ Hardware platform
= Multi-Chip NoC

e Fully asynchronous on-chip network
e Dependable, adaptive, deadlock-free routing
e Efficient inter-chip communication technology

+ Dependable task execution
= Modified Pair & Swap

+ Task allocation
= Redundant allocation, redundant scheduling

* Demonstration of the proposed approach
= Practical automotive application
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Dependability in Processor level

+ Duplicated execution, comparison, and pair-
reco nflg uration Compare Task B results

Compare Task A results i / t i

e 1/0-0 1/O-1 1/O-n
Task A
executed by 02) U2) (22)— eee —(n2
this pair mem-01 mem-11 mem-n1
Processor Processor Processor
core-01 core-nl
mem-00 mem-n0
Processor Processor Processor
core-00 core-10 core-nQ
Task B
executed by
this pair
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Modified Pair & Swap

+ Duplicated execution, comparison, and pair-
reconfiguration
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Implementation is not so simple!

¢ |ssues to be considered

= Copies of tasks should be loaded in several
cores, considering possible faulty patterns

= Third core should always know every
iInformation of the task execution for TMR
configuration

= For each faulty patterns, every task execution
should be done within the control cycle

= Programmers do not want to think about
duplicated or triplicated task execution
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Static / Redundant Task Allocation
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Static / Redundant Task Allocation

Task graph
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Static / Redundant Task Allocation

Task graph
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Temporary TMR configuration

+ Active tasks are also re-executed
= |[ransient errors can be masked

¢ Only "TMR command” is given
= Quick execution is possible
= |O core does not have to keep data

TMR command
-
Input variables - - -
State variables . - .

Active Active Stand-by
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Modified Pair & Swap

+ Duplicated execution, comparison, and pair-
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Temporary TMR configuration

+ Active tasks
= should roll back their state variables

¢ Stand-by task

= should have correct input variables and state
variables

TMR command

T,
Input variables - - - | These

Previous states . . _ should be
. available
State variables .

Active Active Stand-by
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Temporary TMR configuration

* To prepare for TMR configuration, stand-
by task usually

= Recelives all input data given to active tasks

= Recelives the state variables updated by active
tasks Inputs

State variables .\ .\ —

Active wnd-by
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Example of task execution
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Example of task execution
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Example of task execution

Control Cycle

A

AN ZN Z
p0, pl, vo|p0, pl p2, p3, vl p3 p4, v8
A <v A i A
¥ P, ]
AN
v3i| | To M vo v6
v4 v4 > v7
Py 0 0| [pLT! 0
vil P To P v6 v6
0 0 0
P2 v5 v5 3 T2 P v8
v3 v6 : T1 > v6
v4 To | v4 v7
P3 0 | To | ) 0
0 3 T P 0 0
P 4 v4 v7 Ly v7
v5 v5 LB T2 v8
0 B T2 P 0
P5 0 0
v5 v8

2013/6/30 IFIP WG 10.4

21



Implementation is not so simple!

¢ |ssues to be considered

= Copies of tasks should be loaded in several
cores, considering possible faulty patterns

= Third core should always know every
iInformation of the task execution for sudden
TMR configuration

= For each faulty patterns, every task execution
should be done within the control cycle

= Programmers do not want to think about
duplicated or triplicated task execution
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Tool support

+ Given by users
= Simplex simulink program
= Task declaration (by specifying atomic subsystems)
= # of task copies allocated
= # of processer cores available

+ Front-end GUI tool supports

= Allocation of multiple task copies to redundant
processor cores with timing and memory constraints

+ Back-end tool supports (ongoing work)
= C code generation for simulink codes

= Wrapper code templates for receiving and sending
data as well as handling TMR configuration
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O core duplication (ongoing work)

¢+ |O core plays simple but important roles

= Implemented by hardware or a small processor

= Simple crash fault assumed
e Fixed duplex configuration

NoC Platform

First data with correct check-

sum are used

| 1

> Dat A/D, G
ata
IO core decoder [ level |
conv. |,
>< —
ata <
10 core benerato €] level |
G conv. e

Data sent to both IO cores at every

control cycle
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Summary

* For our dependable NoC based platform

= Implementation of dependable task execution
(i.e., modified Pair & Swap)

= Task allocation for modified Pair & Swap
e Front-end tool

¢+ Ongoing work
= Back-end tool
= Implementation of duplicated |O core
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