Development of Dependable
Network-on-Chip Platform (4)

Tomohiro Yoneda
National Institute of Informatics

Masashi Imai Takahiro Hanyu Hiroshi Saito Kenji Kise
Hirosaki Univ. Tohoku Univ. Univ. of Aizu Tokyo Tech.

Project summary

+ 5.5 year National project (CREST)

Third progress report

First progress report Second progress report
pos P pos P at the IFIP summer meeting

at the IFIP winter meeting at the IFIP summer meeting

This progress report
Project Project
Starts Ends
v

\EnA | | - : y

2008.10 2009.4 2010.4 2011.4 2012.4 2013.4 2014.3

¢ Goal

= Platform for performing many and various tasks
dependably, efficiently and adaptively

= Demonstration in automotive control system area

2013/6/30 IFIP WG 10.4 2

Backgrounds

+ Recent cars are equipped with many ECUs
Conventional ECU configuration

Sensors/Actuators

ECU1

ECU2

CAN, FlexRay, etc.

2013/6/30 IFIP WG 10.4

Backgrounds

+ Recent cars are equipped with many ECUs
=« Centralized ECU approach

<
g R [«
Interface corés I:
? R |« >R |

CPU cores\i*

—_ CAN, FlexRay, etc,—

B -

»

> R| |
éCentralized ECUs
R] |

2013/6/30 TIFIP WG 10.4

Backgrounds

+ Recent cars are equipped with many ECUs

| Any ECU can access any sensors/actuators

ECUs efficiently used by balancing loads
Tasks continuously executed even if some ECUs become faulty
K(i.e., faulty ECU does not result in malfunction of its specific functions)/

R —

: R |« >R
Interface corés: §)
g iCentralized ECUs
: R |« > R |« »R|
CPU cores\;* :
ECUI ECU2 | | = | | ECUn

2013/6/30 TIFIP WG 10.4

Outcome

¢+ Hardware platform
= Multi-Chip NoC

e Fully asynchronous on-chip network
e Dependable, adaptive, deadlock-free routing
e Efficient inter-chip communication technology

+ Dependable task execution
= Modified Pair & Swap

+ Task allocation
= Redundant allocation, redundant scheduling

* Demonstration of the proposed approach
= Practical automotive application

2013/6/30 IFIP WG 10.4

Outcome

¢+ Hardware platform

= Multi-Chip NoC

e Fully asynchronous on-(
e Dependable, adaptive, ¢
e Efficient inter-chip comn

+ Dependable task exec
= Modified Pair & Swap Routers

+ Task allocation
= Redundant allocation,

= cores

¢+ Demonstration of the propuseu appruacn
= Practical automotive application

2013/6/30 IFIP WG 10.4

Outcome

¢+ Hardware platform
= Multi-Chip NoC

e Fully asynchronous on-chip network
e Dependable, adaptive, deadlock-free routing
e Efficient inter-chip communication technology

(e Dependable task execution A
= Modified Pair & Swap

+ Task allocation

_ = Redundant allocation, redundant scheduling

* Demonstration of the proposed approach
= Practical automotive application

2013/6/30 IFIP WG 10.4

Dependability in Processor level

+ Duplicated execution, comparison, and pair-
reco nflg uration Compare Task B results

Compare Task A results i / t i

e 1/0-0 1/O-1 1/O-n
Task A
executed by 02) U2) (22)— eee —(n2
this pair mem-01 mem-11 mem-n1
Processor Processor Processor
core-01 core-nl
mem-00 mem-n0
Processor Processor Processor
core-00 core-10 core-nQ
Task B
executed by
this pair

2013/6/30 IFIP WG 10.4

Modified Pair & Swap

+ Duplicated execution, comparison, and pair-
reconfiguration

I* ---------------------- Control cycle ----oeeaeeeaens 'I ‘APOL=P10; time

I/O core o ' AN o o)

*_P(_)O_ A\ | Task A _ Task A} | e)_(_ o o o

P01 Task A t | Task A A P00 <> P01 Task A

: -/ - {APOOPIO - - I S S

P10 \TaskB _ |TaskA) :-‘A:P01=P10 [\|TaskB _ TaskA]

Pi1__ [TaskB]] ARSI - - Tusk] | ST .

P20 | |TaskC| iB:P10=PII _ _________ Task C| : B:P10=PI11i
Pgl _ |TaskC|_ _C}’Z(}_PZ} __________ Task C CP20P21

[ldea is simple! }

2013/6/30 TIFIP WG 10.4

Implementation is not so simple!

¢ |ssues to be considered

= Copies of tasks should be loaded in several
cores, considering possible faulty patterns

= Third core should always know every
iInformation of the task execution for TMR
configuration

= For each faulty patterns, every task execution
should be done within the control cycle

= Programmers do not want to think about
duplicated or triplicated task execution

2013/6/30 IFIP WG 10.4 11

Static / Redundant Task Allocation

Task graph
/ \ Stand—byI p
from IO ' nactive
Actwe\poA P1 Pz/ P3/ Psa Ps
‘ Tow To|i Tol! To
e
/ T+ IERIRER LK
T>
! T2 T2 T2 T2
to 1O

2013/6/30 IFIP WG 10.4

Static / Redundant Task Allocation

Task graph

-

~

from 1O

T

>
>b
P |

to IO

e

Po P1 P2

>< To || To
T+

X |m

2013/6/30 IFIP WG 10.4

Ps3

To

T+

T4

T2

Ps

T+

T2

Static / Redundant Task Allocation

Task graph

-

~

from 1O

T

>
>b
P |

to IO

e W

Po P1 P2 Ps P4 Ps
>< To X To
T+ T1 || T1 |1 T+

X X[

[Alert should be indicated }

2013/6/30 IFIP WG 10.4

Temporary TMR configuration

+ Active tasks are also re-executed
= |[ransient errors can be masked

¢ Only "TMR command” is given
= Quick execution is possible
= |O core does not have to keep data

TMR command
-
Input variables - - -
State variables . - .

Active Active Stand-by

2013/6/30 IFIP WG 10.4 15

Modified Pair & Swap

+ Duplicated execution, comparison, and pair-
reconfiguration

I* ---------------------- Control cycle ----oeeaeeeaens 'I ‘APOL=P10; time

I/O core o ' AN o o)

*_P(_)O_ A\ | Task A _ Task A} | e)_(_ o o o

P01 Task A t | Task A A P00 <> P01 Task A

: -/ - {APOOPIO - - I S S

P10 \TaskB _ |TaskA) :-‘A:P01=P10 [\|TaskB _ TaskA]

Pi1__ [TaskB]] ARSI - - Tusk] | ST .

P20 | |TaskC| iB:P10=PII _ _________ Task C| : B:P10=PI11i
Pgl _ |TaskC|_ _C}’Z(}_PZ} __________ Task C CP20P21

2013/6/30 TIFIP WG 10.4

Temporary TMR configuration

+ Active tasks
= should roll back their state variables

¢ Stand-by task

= should have correct input variables and state
variables

TMR command

T,
Input variables - - - | These

Previous states . . _ should be
. available
State variables .

Active Active Stand-by

2013/6/30 IFIP WG 10.4 17

Temporary TMR configuration

* To prepare for TMR configuration, stand-
by task usually

= Recelives all input data given to active tasks

= Recelives the state variables updated by active
tasks Inputs

State variables .\ .\ —

Active wnd-by

2013/6/30 IFIP WG 10.4 18

Example of task execution

Control Cycle -
Sensor Inputs AN £\ 02 is sent out £\ 04 is sent out g
State variables @ R P03 OiJ S Task graph
A A
of tasks — Active - N
8 > To D \(/)O
Po 0 0 3 T2 from 10
S Active N
0 > To P v0 v0
P |© 0 - vl a
0 0 g 0
1 || Stand-by | |[™
0 v V0
P2 8 Just receive) /g NN 0 L 4
sensor inputs v2 TD
0 Inactive / : 0 /
P3 g Just receive vl v
No action State variablg 0
e N | =y ey e N B B e T2
0 0 0
0 vl Ly v1
e lo ; ¥ ,,
0 T T2 P 0 to IO
Ps |0 0 /
0 v2

2013/6/30 IFIP WG 10.4

Example of task execution

Control Cycle ~
Mismatch/\ PO fault detectg@\ Fault pattern updated /N A\
@ 05, 06, V3 TMﬂ 03, 06, v3[05, 06 07, 08, v4 Oy 09, v5
faulty N ‘ N ‘ N 1
p W > o b~ >
0 i Sy’
0 sfate variables ’.‘
vo| | To | Rollbacklyl 1o |+ v3 v3
Pl vl state variablgs vl R v4
T 0 ||, Tt 0
\(/)0 > To > \(7)3 v3
0
P> | W 3 T2 P (s
S i S o
0 v3 ; T1 |» 0
vl -TO -TO > vl v4
Ps [} 0 0
R— , ===
0 3 Ti » 0 0
P4 vl v4 L v4
v2 v2 L3 T2 v5
T Old I iabl d T P T
0 state variables are preserved, 0
PS v2 when state variables are updated v5

2013/6/30 IFIP WG 10.4

20

Example of task execution

Control Cycle

A

AN ZN Z
p0, pl, vo|p0, pl p2, p3, vl p3 p4, v8
A <v A i A
¥ P,]
AN
v3i| | To M vo v6
v4 v4 > v7
Py 0 0| [pLT! 0
vil P To P v6 v6
0 0 0
P2 v5 v5 3 T2 P v8
v3 v6 : T1 > v6
v4 To | v4 v7
P3 0 | To |) 0
0 3 T P 0 0
P 4 v4 v7 Ly v7
v5 v5 LB T2 v8
0 B T2 P 0
P5 0 0
v5 v8

2013/6/30 IFIP WG 10.4

21

Implementation is not so simple!

¢ |ssues to be considered

= Copies of tasks should be loaded in several
cores, considering possible faulty patterns

= Third core should always know every
iInformation of the task execution for sudden
TMR configuration

= For each faulty patterns, every task execution
should be done within the control cycle

= Programmers do not want to think about
duplicated or triplicated task execution

2013/6/30 IFIP WG 10.4 22

Tool support

+ Given by users
= Simplex simulink program
= Task declaration (by specifying atomic subsystems)
= # of task copies allocated
= # of processer cores available

+ Front-end GUI tool supports

= Allocation of multiple task copies to redundant
processor cores with timing and memory constraints

+ Back-end tool supports (ongoing work)
= C code generation for simulink codes

= Wrapper code templates for receiving and sending
data as well as handling TMR configuration

2013/6/30 IFIP WG 10.4 23

O core duplication (ongoing work)

¢+ |O core plays simple but important roles

= Implemented by hardware or a small processor

= Simple crash fault assumed
e Fixed duplex configuration

NoC Platform

First data with correct check-

sum are used

| 1

> Dat A/D, G
ata
IO core decoder [level |
conv. |,
>< —
ata <
10 core benerato €] level |
G conv. e

Data sent to both IO cores at every

control cycle

2013/6/30 IFIP WG 10.4

Actuator
outputs

Sensor
inputs

24

Summary

* For our dependable NoC based platform

= Implementation of dependable task execution
(i.e., modified Pair & Swap)

= Task allocation for modified Pair & Swap
e Front-end tool

¢+ Ongoing work
= Back-end tool
= Implementation of duplicated |O core

2013/6/30 IFIP WG 10.4 25

